If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-24+16=0
We add all the numbers together, and all the variables
7x^2-8=0
a = 7; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·7·(-8)
Δ = 224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{224}=\sqrt{16*14}=\sqrt{16}*\sqrt{14}=4\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{14}}{2*7}=\frac{0-4\sqrt{14}}{14} =-\frac{4\sqrt{14}}{14} =-\frac{2\sqrt{14}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{14}}{2*7}=\frac{0+4\sqrt{14}}{14} =\frac{4\sqrt{14}}{14} =\frac{2\sqrt{14}}{7} $
| 4x-8x-1=0 | | 26=4b+14 | | 16=k/2+13 | | 75-c=74 | | 1x-3=26 | | -4(n-2)+2(2n+2)=n+5n | | 1,x+8=11 | | f/9−24=−28 | | 3(f−59)=75 | | 2+9s=38 | | 1t+2t-3t=4t | | 7+4m=3(m+5) | | (3x+6)+(5x+4)= | | t-51/6=8 | | g/6+15=23 | | 3/4t=1/8 | | 3(x+8)-3=51-2x | | 24=2d+8 | | H=-2^t+5t+25 | | x(4)=-5x-3 | | 300z+1140=180z | | 71=9v-10 | | -5(1-n)=9+3n | | 7=b/3+4 | | H=-2^+5t+25 | | 2.5t+4=1.5t+6 | | 59=5c+14 | | -6(1-1/12m)-1/3=2/3 | | 2(8x+3x)=176 | | 2(4y+0)=6(y-10.4) | | 8g+1=25 | | 38=4s |